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ABSTRACT
We describe details of a general Mie-Grüneisen equation of state and its numerical
implementation. The equation of state contains a polynomial Hugoniot reference curve, an
isentropic expansion and a tension cutoff.
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TERMS AND DEFINITIONS

ρ0 Reference state density

η Volumetric Strain

T0 Reference state temperature

Cv Heat capacity at constant volume (assumed constant)

Γ Grüneisen parameter

α Γρ0/(1−η) = Γρ = Γ0ρ0 (assumed constant)

C0 Reference sound speed

K0 = ρ0C2
0 Reference adiabatic bulk modulus

Kn Hugoniot coefficient

Pmin Minimum pressure on expansion isentrope

Us Shock velocity in Us−up shock relationship

up Particle velocity in Us−up shock relationship

s Linear coefficient in Us−up shock relationship

ρ Density

P Pressure

E Specific internal energy

T Temperature

S Entropy

Cs Sound speed,
√
(∂P/∂ρ)S

6



1. THE MIE-GRÜNEISEN POWER
EQUATION OF STATE

1.1. INTRODUCTION

The classical Mie-Grüneisen equation of state assumes that the pressure is non-linearly related to
the density but linear in the specific energy relative to a reference curve, R. Thus

P(η ,E) = PR(η)+α [E−ER(η)] (1.1)

where the volumetric strain η is

η = 1− ρ0

ρ
= 1− v

v0
. (1.2)

ρ is the density and v is the specific volume. The subscript 0 refers to a particular point on the
reference curve where the strain is zero and the pressure is zero. This point is called the reference
state. In addition, we assume that α = Γρ0/(1−η) = Γρ = Γ0ρ0 is constant. Γ is the Grüneisen
parameter. The heat capacity Cv = (∂E/∂T )v is also assumed constant giving

E(η ,T ) = ER(η)+Cv [T −TR(η)] (1.3)

Historically, the Mie-Grüneisen equation of state has been primarily used with application to
compression of metal solids [2] and the compressive reference curve is assumed to be a Hugoniot.
However, the reference curve can be a different curve. For example, a Mie-Grüneisen equation of
state using a reference isentrope was matched to a Mie-Grüneisen Us−Up shock Hugoniot with
two parameters for the purpose of demonstrating relevant two dimensional isentropic jet flows
[3].

The sound speed is computed by differentiating Equation 1.1 with respect to density at constant
entropy and utilizing the thermodynamic relationship

dE = T dS−Pdv = T dS+Pv2dρ. (1.4)

Thus

C2
s =

(
∂P
∂ρ

)
S
= P′R(η)

dη

dρ
+α

((
∂E
∂ρ

)
S
−E ′R(η)

dη

dρ

)
= v2 [

ρ0P′R(η)+α
(
P−ρ0E ′R(η)

)]
(1.5)
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since dη/dρ = ρ0v2. In addition,(
∂P
∂ρ

)
T
= v2

ρ0
[
P′R(η)−αCvT ′R(η)

]
(1.6)

We now derive a useful and well known thermodynamics relation for integrating temperature
along the references curves [4, Equation 23]. First,

dS =
1
T

dE +
P
T

dv (1.7)

=
1
T

(
∂E
∂T

)
v
dT +

1
T

((
∂E
∂v

)
T
+P
)

dv (1.8)

=

(
∂S
∂T

)
v
dT +

(
∂S
∂v

)
T

dv (1.9)

The equality of mixed differentials leads to(
∂E
∂v

)
T
+P = T

(
∂P
∂T

)
v

(1.10)

and finally

T dS =CvdT +T
(

∂P
∂T

)
v
dv (1.11)

For the Mie-Grüneisen equation of state with constant Cv and constant α = ρΓ = ρ0Γ0, we then
derive

T dS =CvdT −Γ0CvT dη (1.12)

Equation 1.12 is the key thermodynamic relationship used below to compute the temperature
along the reference curve.

The general Mie-Grüneisen power series equation of state described here contains polynomial
flexibility in the shape of the reference curves. The subscript R refers to a reference state curve
which is either a Hugoniot (subscript H) or an isentrope (subscript I). This particular model
provides three regions: a compressive region, a tension region, and a tensile pressure cutoff region
as described below.

1.2. COMPRESSION

For η > 0 we define:

PR = PH = K0η
(
1+K1η +K2η

2 +K3η
3 + · · ·+KMη

M) (1.13)

where M is an integer giving the maximum number of terms in the polynomial and the subscript
H indicates that the reference curve is a Hugoniot. The first term, K0 = ρ0C2

0 , defines the
adiabatic bulk modulus at the reference point.
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The energy on the Hugoniot curve is given by the well-known shock jump conditions [1]

ER = EH =
PHη

2ρ0
+E0. (1.14)

In order to compute the temperature on the Hugoniot, we use the method of Walsh and Christian
valid for constant α = ρΓ and constant Cv [4]. This method uses Equationn 1.14 and Equation
1.12 to obtain the temperature on the Hugoniot curve,

Substituting Equation 1.12 on the left hand side of Equation 1.7 and the shock jump condition
Equation 1.14 on the right hand side, we obtain a differential equation for the temperature along
the Hugoniot curve,

Cv
dTH

dη
−Γ0CvTH =

dEH

dη
− v0PH =

v0η2

2
d

dη

(
PH

η

)
. (1.15)

Integration on the Hugoniot curve gives

TH = T0eΓ0η +
eΓ0η

2Cvρ0

∫
η

0
e−Γ0zz2 d

dz

(
PH

z

)
dz (1.16)

which leads to

TH = T0eΓ0η +
eΓ0η

2Cvρ0
K0 (K1I2 +2K2I3 +3K3I4 + · · ·+MKMIM+1) (1.17)

where

In =
∫

η

0
e−Γ0zzndz (1.18)

=

(
1

Γ0

)n+1 ∫ Γ0η

0
e−zzndz (1.19)

=

(
1

Γ0

)n+1

γ(n+1,Γ0η) (1.20)

and
γ(n,x) =

∫ x

0
e−zzn−1dz (1.21)

is the lower incomplete gamma function. The η derivative of TH is

dTH

dη
= Γ0TH +

K0

2Cvρ0

(
K1η

2 +2K2η
3 +3K3η

4 + · · ·+MKMη
M+1) (1.22)

We need to evaluate γ(n,x) for arguments, x≥ 0, and integral n≥ 3. As a first cut one might think
to use the well known formula

γ(n,x) = (n−1)!

(
1− e−x

n−1

∑
k=0

xk

k!

)
(1.23)

= (n−1)!
(
1− e−xen−1(x)

)
(1.24)
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where en(x) is the exponential sum function [5]. This identity can be shown by induction using
integration by parts (integrate the exponential factor). This formula would seem to allow for
efficient computation of the required M values of the lower incomplete gamma function.
However, the factorial term multiplied by the difference of two terms that might be close in
magnitude suggest that floating point precision could easily be lost as n increases. Numerical
experiments confirmed this and the algorithm was deemed unsuitable.

However, one can use integration by parts on Equation 1.21 (integrating the polynomial factor), to
derive

γ(n,x) = e−x
N−1

∑
k=0

xn+k

n(n+1) · · ·(n+ k)
+

1
n(n+1) · · ·(n+N−1)

∫ x

0
e−zzn+N−1dz (1.25)

= SN +EN (1.26)

where the sum SN has N terms and EN is the final integral term in Equation 1.25. A simple
estimate gives

EN ≤ xn+N−1(1− e−x)

n(n+1) · · ·(n+N−1)
. (1.27)

An alternate notation is now convenient. If we define

γ2(n,x) = x−nex
γ(n,x) (1.28)

then

γ2(n,x) =
N−1

∑
k=0

xk

n(n+1) · · ·(n+ k)
+

exx−n

n(n+1) · · ·(n+N−1)

∫ x

0
e−zzn+N−1dz (1.29)

= SN
2 +EN

2 (1.30)

Similarly, we have

EN
2 ≤

xN−1ex(1− e−x)

n(n+1) · · ·(n+N−1)
(1.31)

and to achieve double precision relative accuracy for γ2(n,x), we stop adding terms when

EN
2 ≤ 10−15SN

2 . (1.32)

We have also
eΓ0η In = γ2(n+1,Γ0η)ηn+1 (1.33)

which leads to the convenient form

TH = T0eΓ0η +
K0

2Cvρ0

M

∑
i=1

iKiη
i+2

γ2(i+2,Γ0η) (1.34)

Since we potentially have a large number of terms to evaluate, we look for even more efficiency
by looking for a stable backward recurrence for γ2 that will allow for computing γ2(n,x) at the
same time that Equation 1.34 is evaluated as a telescoping sum.
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Integrating by parts on Equation 1.21 (integrating the polynomial factor once), we derive

γ(n,x) =
1
n

(
γ(n+1,x)+ e−xxn) (1.35)

and the corresponding recursion relation for γ2 is

γ2(n,x) =
x
n

γ2(n+1,x)+
1
n
. (1.36)

which is a backward recurrence with a starting value γ2(M+2,x) evaluated using Equation 1.29.
Let ε2(n,x) be difference between the numerical solution and the exact solution for γ2. This error
satisfies the backward recurrence relation

ε2(n,x) =
x
n

ε2(n+1,x) (1.37)

with solution

ε2(n,x) =
xM+2−n

n(n+1)(n+2) · · · (M+1)
ε2(M+2,x), 3≤ n≤M+1 (1.38)

Utilizing Equation 1.24 to switch to a relative error εr
2, we obtain

ε
r
2(n,x) =

(
1− e−xeM+1(x)
1− e−xen−1(x)

)
ε

r
2(M+2,x), 3≤ n≤M+1 (1.39)

and it is seen that the backwards recurrence algorithm is stable and has a well controlled error. As
a check, numerical results from the recurrence algorithm were compared to a direct evaluation of
Equation 1.29. The numerical stability of recurrence relations has an extensive literature [6].

As an example of the power series form for the Hugoniot, we can compute the power series
expansion of the linear Us−up Hugoniot in terms of η . The relevant shock jump equations are,
respectively, mass, momentum conservation and the assumed linear Us−Up relation:

ρ0Us = ρ(Us−up), (1.40)

PH = ρUsup (1.41)

and
Us =C0 + sup (1.42)

where Us is the shock speed, C0 is the sound speed at the initial (reference) state, s is the linear
coefficient and up is the particle velocity. Eliminating Us from Equation 1.40 results in

up =
C0η

1− sη
(1.43)

and substitution of Equation 1.42 and then Equation 1.43 in Equation 1.41 gives the Hugoniot
entirely in terms of η

PH =
ρ0C2

0η

(1− sη)2 (1.44)

Expanding Equation 1.44 in a power series in η results in

PH = ρ0C2
0η(1+ sη +(sη)2 +(sη)3 + · · ·)2 (1.45)

= ρ0C2
0η(1+2sη +3(sη)2 +4(sη)3 + · · ·) (1.46)

so that Kn = (n+1)sn for n≥ 1.
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1.3. EXPANSION

For ηmin =
Pmin
K0
≤ η < 0, the reference curve is defined by an isentrope with a single fixed K0.

PR = PI = K0η (1.47)

Equation 1.7 in the form
dE
dη

= v0P (1.48)

yields

ER = EI =
K0η2

2ρ0
+E0 (1.49)

and Equation 1.12 in the form
dT
dη

= Γ0T (1.50)

results in
TR = TI = T0eΓ0η (1.51)

1.4. PRESSURE CUTOFF IN TENSION

Similarly, for η < ηmin =
Pmin
K0

, we define a continuation of the isentropic reference curve which
does not sustain additional tensile pressure. Thus

PR = PI = Pmin (1.52)

ER = EI =
K0η2

min
2ρ0

+E0 +
Pmin

ρ0
(η−ηmin) (1.53)

TR = TI = T0eΓ0η (1.54)

1.5. CONCLUSION

We have documented details of a Mie-Grüneisen equation of state with a polynomial power series
compressive Hugoniot reference curve and a linear isentropic expansion reference curve with a
pressure cutoff in tension. A constant ρΓ product and constant heat capacity is assumed. The
numerical approaches utilized in the evaluating the analytic solution are fully described.
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